Search results for " scaffolds"
showing 10 items of 190 documents
Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defe…
2020
Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano- hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differen- tiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic…
Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering
2020
As a milestone in soft and hard tissue engineering, a precise control over the micropatterns of scaffolds has lightened new opportunities for the recapitulation of native body organs through three dimentional (3D) bioprinting approaches. Well-printable bioinks are prerequisites for the bioprinting of tissues/organs where hydrogels play a critical role. Despite the outstanding developments in 3D engineered microstructures, current printer devices suffer from the risk of exposing loaded living agents to mechanical (nozzle-based) and thermal (nozzle-free) stresses. Thus, tuning the rheological, physical, and mechanical properties of hydrogels is a promising solution to address these issues. Th…
Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ
2018
Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The r…
Relevance of 3d culture systems to study osteosarcoma environment
2018
Abstract Osteosarcoma (OS) is the most common primary malignant tumor of bone, which preferentially develops lung metastasis. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for patients with metastatic or recurrent OS remains dramatically poor. Novel therapies are therefore required to slow progression and eradicate the disease. Furthermore, to better understand the cellular and molecular mechanisms responsible for OS onset and progression, the development of novel predictive culture systems resembling the native three-dimensional (3D) tumor microenvironment are mandatory. ‘Tumor engineering’ approaches radically changed t…
Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.
2018
Human dermo-epidermal skin equivalents (DE) comprising in vitro expanded autologous keratinocytes and fibroblasts are a good option for massive burn treatment. However, the lengthy expansion time required to obtain sufficient surface to cover an extensive burn together with the challenging surgical procedure limits their clinical use. The integration of DE and biodegradable scaffolds has been proposed in an effort to enhance their mechanical properties. Here, it is shown that poly(hydroxybutyrate) electrospun scaffolds (PHB) present good biocompatibility both in vitro and in vivo and are superior to poly-epsilon-caprolactone electrospun scaffolds as a substrate for skin reconstruction. Impl…
Evidence of Absorptive Function in vivo in a Neo-Formed Bio-Artificial Intestinal Segment Using a Rodent Model.
2015
A promising therapeutic approach for intestinal failure consists in elongating the intestine with a bio-engineered segment of neo-formed autologous intestine. Using an acellular biologic scaffold (ABS), we, and others, have previously developed an autologous bio-artificial intestinal segment (BIS) that is morphologically similar to normal bowel in rodents. This neo-formed BIS is constructed with the intervention of naïve stem cells that repopulate the scaffold in vivo, and over a period of time, are transformed in different cell populations typical of normal intestinal mucosa. However, no studies are available to demonstrate that such BIS possesses functional absorptive characteristics nece…
Bi-layered polyurethane – Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model
2016
As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial …
Effect of Low-Intensity Pulsed Ultrasound on Osteogenic Human Mesenchymal Stem Cells Commitment in a New Bone Scaffold
2017
Purpose Bone tissue engineering is helpful in finding alternatives to overcome surgery limitations. Bone growth and repair are under the control of biochemical and mechanical signals; therefore, in recent years several approaches to improve bone regeneration have been evaluated. Osteo-inductive biomaterials, stem cells, specific growth factors and biophysical stimuli are among those. The aim of the present study was to evaluate if low-intensity pulsed ultrasound stimulation (LIPUS) treatment would improve the colonization of an MgHA/Coll hybrid composite scaffold by human mesenchymal stem cells (hMSCs) and their osteogenic differentiation. LIPUS stimulation was applied to hMSCs cultured on …
Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model
2017
In vitro reconstruction of an alveolar barrier for modeling normal lung functions and pathological events serve as reproducible, high-throughput pharmaceutical platforms for drug discovery, diagnosis, and regenerative medicine. Despite much effort, the reconstruction of organ-level alveolar barrier functions has failed due to the lack of structural similarity to the natural basement membrane, functionalization with specific ligands for alveolar cell function, the use of primary cells and biodegradability. Here we report a bipolar cultured alveolar-capillary barrier model of human primary cells supported by a basement membrane mimics of fully synthetic bifunctional nanofibers. One-step elect…
Amorphous polyphosphate–hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro
2015
There is increasing evidence that inorganic calcium-polyphosphates (polyP) are involved in human bone hydroxyapatite (HA) formation. Here we investigated the morphology of the particles, containing calcium phosphate (CaP) with different concentrations of various Na-polyP concentrations, as well as their effects in cell culture. We used both SaOS-2 cells and human mesenchymal stem cells. The polymeric phosphate readily binds calcium ions under formation of insoluble precipitates. We found that addition of low concentrations of polyP (10wt.%, referred to the CaP deposits) results in an increased size of the HA crystals. Surprisingly, at higher polyP concentrations (10wt.%) the formation of cr…